HW1 Solution

Monday, November 23, 2009
(1)

$$
x(t)=A_{C} M(t)
$$

(a) $x(t)=A_{c} m(t)$ so, $x(t)$ is also band limited to w.
$u(t)=x(t)+\sqrt{2} \cos (\overbrace{\omega_{c} t}^{i}) \omega_{c}=2 \pi t_{c}$
$v(t)=u^{2}(t)=\left(a(t)+\sqrt{2} \cos \left(\omega_{c} t\right)\right)^{2}$
$=x^{2}(t)+2 \sqrt{2} a(t) \cos \left(\omega_{c} t\right)+\underbrace{2 \cos ^{2}\left(\omega_{c} t\right)}_{\swarrow}$

$$
=\left(1+\alpha^{2}(t)\right)+2 \sqrt{2} \alpha(t) \cos \omega_{c} t+\cos \left(2 \omega_{c} t\right)
$$

Note: $x^{2}(t) \xrightarrow{\rightrightarrows} x(t) * x(f)$

$$
\text { So, } x^{2}(t) \text { is bandlimited to } 2 w
$$

$$
\begin{aligned}
& \text { Because } f_{c} \gg W \text {, the spectrum of } x^{2}(t) \text { will not } \\
& \text { be in the passband of the BPF which centers around } f_{c} \text {. }
\end{aligned}
$$

Note 2: The term $\cos \left(2 \omega_{c} t\right.$) is at frequency $2 \times f_{c}$ which again is outside the passband.

$$
\begin{aligned}
y(t) & =B P F\{v(t)\} \\
& =2 \sqrt{2} \alpha(t) \cos \omega_{c} t \\
& =2 \sqrt{2} A_{c} m(t) \cos \omega_{c} t
\end{aligned}
$$

(b) Assume

$$
\begin{aligned}
& x(t)=A_{c} m(t) \sqrt{2} \cos \left(\omega_{c} t\right) \\
& x(t) \rightarrow Y^{I}(t)
\end{aligned} \begin{aligned}
\sqrt{2} \cos \left(\omega_{c} t\right)
\end{aligned} \quad \begin{aligned}
& \text { From the above figure, } \\
& v(t)=\left(x(t)+\sqrt{2} \cos \left(\omega_{c} t\right)\right)^{2} \\
&\left.-0 \operatorname{cnc}^{2}(\ldots 1+) \mid \Delta m(t)+1\right)^{2}
\end{aligned}
$$

HW1 Solution

Monday, November 23, 2009
(1)

Note 1: $x^{2}(t) \xrightarrow{\text { J }} x(t) * x(f)$

$$
\text { So, } x^{2}(t) \text { is bandlimited to } 2 w
$$

Because $f_{c} \gg W$, the spectrum of $\alpha^{2}(t)$ will not be in the passband of the BPF which centers around f_{C}.

Note 2: The term $\cos \left(2 \omega_{c} t\right)$ is at frequency $2 * f_{c}$ which again is outside the passband.

$$
\begin{aligned}
y(t) & =\operatorname{BPF}\{v(t)\} \\
& =2 \sqrt{2} \alpha(t) \cos \omega_{c} t \\
& =2 \sqrt{2} A_{c} m(t) \cos \omega_{c} t
\end{aligned}
$$

(b) Assume

$$
o e(t)=A_{c} m(t) \sqrt{2} \cos \left(\omega_{c} t\right)
$$

$$
x(t) \rightarrow \underset{\sim}{+} \rightarrow \underbrace{L r}_{v(t)} \rightarrow y^{I}(t)
$$

$\sqrt{2} \cos \left(\omega_{c} t\right)$
From the above figure,

$$
\begin{aligned}
v(t) & =\left(x(t)+\sqrt{2} \cos \left(\omega_{c} t\right)\right)^{2} \\
& =2 \cos ^{2}\left(\omega_{c} t\right)\left(A_{c} m(t)+1\right)^{2} \\
& =1+\cos \left(2 \omega_{c} t\right)(A_{c}^{2} \underbrace{m^{2}(t)}_{\nearrow}+1+2 A_{c} \underbrace{\substack{\text { spectrum } \\
\text { is from }}}_{\substack{m(t)}} \begin{array}{l}
\text { spectrum } \\
\text { is from }
\end{array} \\
& {[-2 \omega, 2 \omega] \quad[-\omega, \omega] }
\end{aligned}
$$

$$
\begin{aligned}
& x(t)=A_{C} M(t) \\
& \text { (a) } x(t)=A_{c} m(t) \\
& \text { So, } x(t) \text { is also bandlimited to } W \text {. } \\
& u(t)=x(t)+\sqrt{2} \cos (\overbrace{\omega_{c} t}^{n} \omega_{c}=2 \pi f_{c} \\
& v(t)=\mu^{2}(t)=\left(\alpha(t)+\sqrt{2} \cos \left(\omega_{c} t\right)\right)^{2} \\
& =x^{2}(t)+2 \sqrt{2} \alpha(t) \cos \left(\omega_{c} t\right)+2 \cos ^{2}\left(\omega_{c} t\right) \\
& \swarrow \\
& B P F \quad 1+\cos \left(2 \omega_{c} t\right) \quad B P F \\
& =\left(1+\alpha^{2}(t)\right)+2 \sqrt{2} \alpha(t) \cos \omega_{c} t+\cos \left(2 \omega_{c} t\right)
\end{aligned}
$$

$$
=g(t)+g(t) \cos \left(2 \omega_{c} t\right)
$$

Note: We know that $g(t)$ is band limited to $[-2 w, 2 w]$ because all of its terms are band limited to $[-2 w, 2 w]$. So, only sore parts of it will pass through the LPF.
Note 2: $g(t) \cos \left(2 \omega_{c} t\right)$ is centered @ $2 f_{l}$ and therefore will not pass thought the LPF.

$$
\begin{aligned}
y^{I}(t) & =\operatorname{LPF}\{v(t)\} \\
& =\operatorname{LPF}\{g(t)\} \\
& =1+2 A_{c} m(t)+\operatorname{LPF}\left\{A_{c}^{2} m^{2}(t)\right\}
\end{aligned}
$$

This term has spectrum beyond IW So, only a portion of it will pass through the LPF.
$y^{I}(t)$ is not proportional to $m(t)$.
Hence, this block diagram does not work as a de modulator.
(c) As sump

$$
\begin{aligned}
& x(t)=A_{c} m(t) \sqrt{2} \cos \left(\omega_{c} t\right) \text { as in part (b). } \\
& x(t) \rightarrow y^{Q} \longrightarrow y^{Q}(t) \\
& \sqrt{2} \sin \left(\omega_{c} t\right)
\end{aligned}
$$

We then have

$$
\begin{aligned}
v(t)= & \left(x(t)+\sqrt{2} \sin \left(\omega_{c} t\right)\right)^{2} \\
= & 2\left(A_{c} m(t) \cos \left(\omega_{c} t\right)+\sin \left(\omega_{c} t\right)\right)^{2} \\
= & 2\left(A_{c}^{2} m^{2}(t) \cos ^{2}\left(\omega_{c} t\right)+A_{c} m(t) \cos \left(\omega_{c} t\right) \sin \left(\omega_{c} t\right)\right. \\
& \left.+\sin ^{2}\left(\omega_{c} t\right)\right) \\
= & 2\left(A_{c}^{2} m^{2}(t) \cos ^{2}\left(\omega_{c} t\right)+\sin ^{2}\left(\omega_{c} t\right)\right) \\
& +A_{c} m(t) \sin \left(2 \omega_{c} t\right) \\
= & 2\left(\left(A_{c}^{2} m^{2}(t)-1\right) \cos { }^{2}\left(\omega_{c} t\right)+1\right)+A_{c} m(t) \sin \left(2 \omega_{c} t\right) \quad L P F \\
= & 2+\left(A_{c}^{2} m^{2}(t)-1\right)\left(1+\cos \left(2 \omega_{c} t\right)\right)+A_{c} m(t) \sin \left(2 \omega_{c} t\right) \\
= & 2+L P F\left\{A_{c}^{2} m^{2}(t)\right\}-1 \quad 0 \\
= & L P F\left\{A_{c}^{2} m^{2}(t)\right\}+1
\end{aligned}
$$

$$
=\operatorname{LPF}\left\{A_{c}{ }^{2} m^{2}(t)\right\}+1
$$

(d) Observe that

Hence, the following block diagram would work:

(a) $y(t)=\left(m(t)+\sqrt{2} \cos \left(2 \pi f_{0} t\right)\right)^{3}$

$$
\begin{aligned}
=m^{3}(t)+3 m^{2}(t) \sqrt{2} \cos \omega_{0} t & +\underbrace{3 m(t) 2 \cos ^{2} \omega_{0} t}+(\sqrt{2})^{3} \cos ^{3}\left(\omega_{0} t\right) \\
& =3 m(t)\left(1+\cos 2 \omega_{0} t\right) \\
& =3 m(t)+3 m(t) \cos \left(2 \omega_{0} t\right)
\end{aligned}
$$

We want $z(t)=m(t) \sqrt{2} \cos \left(\omega_{c} t\right)$.

$$
\left\{\begin{aligned}
2 \cos ^{2}(\theta) & =1+\cos (2 \theta) \\
2 \cos ^{3}(\theta) & =\cos \theta+\cos \theta \cos 2 \theta \\
& =\cos \theta+\frac{1}{2} \cos \theta+\frac{1}{2} c \\
& =\frac{3}{2} \cos \theta+\frac{1}{2} \cos 3 \theta
\end{aligned}\right.
$$

We see that the only term in $y(t)$ that has the form

$$
\text { constant } \times m \times \cos ()
$$

is $\quad 3 m(t) \cos \left(2 \omega_{0} t\right)$.
Therefore, we will center the passband to cover this part and adjust the gain to make the output the same as $z(t)$.
In particular,

$$
\begin{aligned}
& \text { We need to nave } \begin{array}{l}
2 f_{0}=f_{c} \\
f_{0}=f_{c} / 2
\end{array} \\
& \text { Let } H_{B P}(f)= \begin{cases}c, & \left|f-f_{c}\right| \leq w \\
c, & \left|f+f_{c}\right| \leq w \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

Then,

```
z ( t ) = \underbrace { C \times 3 } m ( t ) \operatorname { c o s } ( 2 \omega _ { 0 } t )
```

we need $C \times 3=\sqrt{2}$

$$
c=\frac{\sqrt{2}}{3}
$$

The plot of $H(t)$ is given below:

(b) From (a), we have

$$
\begin{aligned}
& y(t)=m^{3}(t)+3 \sqrt{2} m^{2}(t) \cos \left(\omega_{0} t\right)+3 m(t) \cos \left(2 \omega_{0} t\right)+\frac{1}{\sqrt{2}} \cos \left(3 \omega_{0} t\right) \\
& +3 m(t)+\frac{3}{\sqrt{2}} \cos \left(\omega_{0} t\right) \\
& \text { without trying to make and accurate } \\
& \text { plot for } m^{3}(t) \text { we know that it is } \\
& \text { band limited to } 3 w .
\end{aligned}
$$

(c) $z(t)=m(t) \sqrt{2} \cos \left(2 \pi f_{c} t\right)$
we know that

So,

$Z(t)$ is the above since. function multiplied
$Z(t)$ is the above since. function multiplied by $\sqrt{2} \cos \left(2 \pi f_{c} t\right)$.
Because $f_{c} \gg w$, we know that

$$
\frac{1}{w} \gg \frac{1}{f_{c}}
$$

period of cos.
So, the sine function becomes the envelope of the cosine carrier.

